7.Binomial Theorem
hard

यदि $\left(1+x^{\log _{2} x}\right)^{5}$ के द्विपद प्रसार में तीसरा पद $2560$ के बराबर है, तो $x$ का एक संभव मान है 

A

$\frac{1}{4}$

B

$4\sqrt 2 $

C

$\frac{1}{8}$

D

$2\sqrt 2 $

(JEE MAIN-2019)

Solution

In the expansion of $\left(1+x^{\log _{2} x}\right)^{5}$

third term say $\mathrm{T}_{3}=^{5} \mathrm{C}_{2}\left(\mathrm{x}^{\log _{2} \mathrm{x}}\right)^{2}=2560$

$\Rightarrow\left(x^{\log x}\right)^{2}=256$

taking lograthium to the base $2$ on both sides

$\Rightarrow 2\left(\log _{2} x\right)^{2}=8 \Rightarrow\left(\log _{2} x\right)=\pm 2$

$\Rightarrow x=4, \frac{1}{4}$

Here $x=\frac{1}{4}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.